The Air Pilot's Manual

Volume 4

Helicopter Manual

- Principles of Flight (H)
- Aircraft General Knowledge (H)
 plus Q&A Sections
- Operational Procedures (H)
- Flight Performance & Planning (H)
- Including Turbine Engines

Nothing in this manual supersedes any legislation, rules, regulations or procedures contained in any operational document issued by Her Majesty's Stationery Office, the Civil Aviation Authority, the European Union, the European Commission, EASA, ICAO, the manufacturers of aircraft, engines and systems, or by the operators of aircraft throughout the world. Note that as maps and charts are changed regularly, those extracts reproduced in this book must not be used for flight planning or flight operations.

Copyright © 2022 Pooleys-Air Pilot Publishing Limited, Helicopters

ISBN 978-1-84336-318-7

First Edition June 2022

All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without permission from the publisher in writing.

Origination by Pooleys Flight Equipment Limited.

Published by Pooleys-Air Pilot Publishing Limited Elstree Aerodrome Elstree, Hertfordshire WD6 3AW, England

Tel: +44(0)208 207 3749 Web: www.pooleys.com Email: sales@pooleys.com

The Air Pilot's Manual

Helicopter Manual

Contents

Chapter 1 The Forces Acting on a Helicopter	1
Chapter 2 Weight	
Chapter 3 Aerofoil Lift	
Pressure Distribution and Airflow around an Aerofoil	
Airflow around an Aircraft	
Streamline Flow	
Turbulent Flow	
The Aerofoil and Bernoulli's Principle	
Aerofoil Shapes	
Camber	
A Typical Low-Speed, Well-Cambered Wing	16
Pressure Distribution Changes with Angle of Attack	18
The Centre of Pressure	
Lift from a Typical Aerofoil and the Lift Equation	20
Chapter 4 Airspeed	27
Speed Measurement	
Indicated Airspeed and True Airspeed	
Indicated, Calibrated and Rectified Airspeed	
Calculating True Airspeed from the Indicated Airspeed	32
Chapter 5 Drag	37
Total Drag	
Parasite Drag	
Induced Drag	
Flight Conditions that Increase Induced Drag	
Total Drag	
Drag from an Agrafail	40

SECTION ONE – Principles of Flight	53
Chapter 1 Principles of Flight – Helicopters	55
Movement of the Rotor Disc	60
Chapter 2 Aerodynamics of the Rotor	65
Basic Forces on the Aerofoil	
Blade Design	
Determining the direction of airflow relative to the rotor blade	
Washout	
Collective Pitch	
Collective Pitch Changes – Feathering	75
The Swash Plate System – Collective Pitch Change	75
Control of Rotor RPM (N _R)	77
Dissymmetry of Lift	
The Cyclic Pitch	
Blade Flapping	
Coning	
Dragging	
Flapping to Equality	85
Chapter 3 Phase Lag and Advance Angle	91
Control Orbit	
Pitch Operating Arm Movement	
Resultant Change in Disc Attitude	
Phase Lag	
Advance Angle	95
Chapter 4 The Tail Rotor	
Tail Rotor Drift	
Tail Rotor Roll	
TAIL NOTOL NOT	100
Chapter 5 Vertical Climb and Descent	109
Vertical Movement	
Control of Rotor (RPM)	
Vertical Descent	
Horizontal Movement	
Limits of Rotor RPM (N _R)	
Overtorquing	
Overpitching	
Ground Effect	
Recirculation	116

Chapter 6 Transition	121
Translational Lift	122
Flapback	126
Inflow Roll	127
Flare and its Effects	128
Landing	131
Chapter 7 Autorotation	135
Autorotation in Still Air	
Autorotative Force/Rotor Drag	
Rate of Descent	
Relative Airflow – Vertical Autorotation	
Autorotation with Forward Speed	
Individual Effect:	
Combined Effect	
Flare	143
Chapter 8 Ground Resonance, Vortex Ring, Power Settling	
and Blade Sailing	149
Ground Resonance	
Origins of Ground Resonance	
Rotor Head Vibration	
Fuselage Vibration	
Vortex Ring	
Vortex Ring State Symptoms and Recovery Action	
Power Settling	
Tail Rotor Vortex Ring	
Loss of Tail Rotor Effectiveness (LTE)	
Blade Sailing	
Static and Dynamic Rollover	162
Chapter 9 Stability	
Principles	
Static Stability	
Dynamic Stability	
Helicopter Stability – Hover	
Helicopter Stability – Forward Flight	
Helicopter Aids to Stability – Introduction	
C of G Position (Pendulosity)	
Automatic Stabilisation Equipment (ASE)	178

Chapter 10 Limits to High Speed Flight	187
Causes of Retreating Blade Stall	
Mast Bumping – Summary:	
······	
SECTION TWO – Aircraft General Knowledge (H)	197
Chapter 1 Design, Construction and Development	100
Types and Configurations	
Engine Mounting Position	
Pilot's Controls	
Control/Rotor RPM	
CONTROLO III W	201
Chapter 2 Helicopter Transmission Systems	203
Gearbox Condition Monitoring	
Conformal Gears	
Clutch Systems	
Chapter 3 Tail Rotors and Anti-Torque Devices	209
Chapter 4 Helicopter Engines	213
Piston Engines	214
Gas Turbines	214
Chapter 5 Piston Engines	
Principle	
Ignition Systems	221
Carburation	
Carburettor Icing	
Oil Systems	231
Fuel Systems	234
Cooling Systems	244

Chapter 6 Turbine Section	249
Basics	
Gas Turbines General	252
Helicopter Turbo Shaft Engine	254
The Engine Oil System	258
Fuel System	
The Transmission	261
The Tail Rotor Drive Train	263
The Electrical System	264
Chapter 7 Vacuum System	271
Chapter 7 vacuum system	
Chapter 8 Electrical System	273
Alternators/Generators	275
Chapter 9 Aircraft Instruments	279
The Pitot Static System	
The Airspeed Indicator	282
The Altimeter	286
The Vertical Speed Indicator	289
Gyroscopic-Operated Instruments	292
The Attitude Indicator	295
Errors of the Attitude Indicator	297
The Heading Indicator	298
Chapter 10 Engine Instruments	305
Instruments in More Advanced Aircraft	
Ancillary Instruments	
,	
Chapter 11 Hydraulics	

SECTION THREE – Operational Procedures (H)	313
Chapter 1 Helicopter Airframe Icing	315
Chapter 2 Emergencies	323
Chapter 3 Operational Considerations	327
Wake Vortex	
Wake Vortex Separation	327
Wind Shear	328
Noise Abatement	
Rotor Downwash	329
Chapter 4 Fire Extinguishers	331
Portable Extinguishers	333
Chapter 5 Runway Incursion Awareness	
& Rules of the Air Regs. 2015 - Section 5)	
Signals and Markings in the Signals Area	335
Signals on Paved Runways and Taxiways	
Markers on Unpaved Manoeuvring Areas	339
Displaced Threshold Markings	
Summary of Aerodrome Signals Visible only when on the Ground	343

SECTION FOUR – Flight Performance & Planning	345
Chapter 1 Mass and Balance	347
Chapter 2 Flight Performance & Planning	373
Power Requirements	373
Summary of Range Parameters	
Summary of Endurance Parameters	381
Summary	
Chapter 3 Helicopter Performance	
Using the Pooleys CRP-1 Navigation Computer	392
Index	395

Fditorial Team

Author - Roy Quantick

Roy Quantick FRAeS, FRMetS, born 2nd October 1929, was a former RAF pilot and Airline Captain and operated the World air routes. He held a British Airline Transport Pilot's Licence and the Flight Navigator's Licence. For 15 years he specialised in crop protection and insect control, working as Operations Manager and Aviation Manager in large programmes for the chemical industry and the UN World Health Organisation. He became director of the International Agricultural Aviation Centre at the Cranfield Institute of Technology. He published a number of papers on the safety aspects of this industry, both in aircraft design and the use of toxic chemical formulations. He authored two books in this field: The Handbook for Agricultural Pilots, and Aviation in Crop Protection and Insect Control (1985), since translated into 4 languages.

He also authored Climatology for Airline Pilots–Blackwells 2001 and Cranfield Aviation Studies, Home Study Courses for JAR PPL(A) & (H). Roy Quantick taught for over 25 years at the Cranfield Institute of Technology and from 1985 was an approved CAA instructor at training schools on the campus of Cranfield University teaching ATPL students. Roy retired in 2010 and died on 9th June 2015. He will be sorely missed.

Geoff Day BA

Geoff started flying at Biggin Hill before joining the RAF whilst at University. His first tour was flying Whirlwind helicopters on Search & Rescue at RAF Leuchars, during which he was awarded 2 immediate Queens Commendations.

He then became a Flying Instructor initially on fixed wing before returning to helicopters to instruct on Search and Rescue. He remained instructing and examining, holding the RAF's prestigious A2 instructor ratings for both helicopters and fixed wing, before "retiring" from the RAF in 1988. On leaving the RAF, Geoff worked for various helicopter companies both as a commercial pilot flying VIP charters, pleasure flying, loadlifting, firefighting and pipeline and powerline patrols, and as a helicopter instructor and examiner.

Geoff now specialises in instructing and in particular in providing courses for the Commercial Pilot's Licence and Instructor Certificate – both on helicopters. He has trained over 200 commercial pilots and instructors.

He flies 10 types of helicopter and, at the time of writing, has a total of some 25,000 flying hours, including 18,000 instructional hours. He holds UK CAA/EASA FI, FE (PPL & CPL), FIE and SE ratings and approvals.

He is the author of the best selling book "Helicopter Aerodynamics Made Simple (Well....relatively simple!)" now published by Pooleys.

Dorothy Saul-Pooley LLB (Hons) FRAeS FRIN

Dorothy held both an ATPL(A) and CPL(H) and was an instructor and examiner on aeroplanes and an instructor on helicopters for over 25 years. For 15 years she was Head of Training of a school dedicated to running Flight Instructor and examiner courses at Shoreham Airport. For 20 years Dorothy was also a CAA Flight Instructor Examiner (Senior Examiner).

Dorothy originally qualified as a solicitor in 1982 and acted for many years as a specialist dealing with aviation insurance liability issues and aircraft accident investigation work. She has lectured widely on aviation law and insurance matters. This highly unusual combination of qualifications and experience led to Dorothy's appointment as one of the Honorary Solicitors to the Guild of Air Pilots and Air Navigators (GAPAN).

Dorothy is a Fellow of the Royal Aeronautical Society and of the Royal Institute of Navigation. She is the Past Chairman of the GAPAN Instructor Committee, of which she was a founding member and she was the prime instigator of the Guild's biennial joint Forum with the Central Flying School at RAF Cranwell for Senior Flight Instructors, both civil and military. She is also Past Chairman of the Education and Training Committee. Dorothy was elected to the post of Master of the Honourable Company of Air Pilots (formerly GAPAN) for the year 2014–2015, the first woman to hold that post. Dorothy currently holds the post of Chairman of the Professional Flying Instructors Association and is the Governor of the British Section of the 99s, an international women pilots' organisation.

In 2003, Dorothy was awarded the Jean Lennox Bird Trophy for her contribution to aviation and support of Women in Aviation and the British Women Pilots Association (BWPA). In 2013, Dorothy was honoured to receive the prestigious award of a Master Air Pilot certificate from GAPAN. In 2015 she was awarded the Brabazon Cup by the BWPA for her outstanding achievements in aviation. In 2019 Dorothy was awarded the Pike Trophy by the Honourable Company of Air Pilots for her outstanding contribution to the maintenance of civil flying instruction standards.

As consulting editor for Air Pilot Manuals and for Pooleys Flight Equipment, Dorothy has written, edited and contributed to more than 30 training manuals and has published many articles in aviation magazines, legal journals and on-line publications.

Dave Lewins

Dave holds an ATPL(A) and a CPL(H) and is an instructor on both helicopters and aeroplanes.

Dave has a lifetime of experience in aviation since solo gliding with the Air Cadets at 15, an RAF Flying Scholarship at 16, PPL at 17, RAF flying training in Jet Provosts, then on to Hawks, Hunters and Phantoms.

His second tour of RAF duty was the start of his career as an instructor and instrument rating examiner on the Phantom Operational Conversion Unit.

A three-year exchange tour with the USAF then followed in Arizona instructing pilots on the F15 Eagle.

Dave's last four years of 19 in RAF service were spent as an instructor and examiner back on the Hawk on the Tactical Weapons squadrons in Devon and Anglesey, after which he spent fifteen years with the airlines flying the Boeing 757/767 and Airbus 320/321 on short, medium and long haul routes across Europe, Asia, Africa and USA, gaining his Command in 2005.

Dave's love of instructing has developed throughout his 40-year career and his conversion to helicopters opened a whole new aspect of flying and instructing culminating in him setting up a groundschool and examination facility at Gloucestershire Staverton Airport.

Daljeet Gill BA(Hons)

Daljeet is the Head of Design & Development for Pooleys Flight Equipment and editor of the Air Pilot's Manuals, Pre-flight Briefing and R/T Communications as well as many other publications. Daljeet has been involved with the editing, typesetting and designing of all Pooleys publications and products since she joined us in 2001. Graduating in 1999 with a BA(Hons) in Graphic Design, she deals with marketing, advertising, exhibition design and technical design of our manufactured products in the UK. She maintains our website and produces our Pooleys Catalogue. Daljeet's design skills and imaginative approach have brought a new level of clarity and readability to the projects she has touched.

Acknowledgements

The Civil Aviation Authority, David Patterson, Ron Jenkins, Ian MacGregor, Ken Bannister, David Evans, Paul White and many other instructors whose comments and help have been invaluable.

AIR PILOT'S MANUAL 4 (H) The Helicopter - Technical

SECTION 1 – Principles of Flight (H)

SECTION 2 – Aircraft General Knowledge (H)

SECTION 3 – Operational Procedures (H)

SECTION 4 – Flight Performance and Planning (H)

This manual is intended to provide PPL students with comprehensive study material to cover the EASA Part-FCL & UK CAA Part-FCL syllabus for the four helicopter-specific examinations at PPL level: 'Aircraft General Knowledge', 'Principles of Flight', 'Operational Procedures', 'Flight Performance & Planning', and the alternative engines paper in 'Aircraft General Knowledge' covering Turbine Engines.

The manual covers all subjects as required by the EASA Acceptable Means of Compliance (AMC), in accordance with the Annex to ED Decision 2011/016/R, which has now been imported into UK law by the EU Withdrawal Act 2018 and knowledge of all subjects herein can be tested either as part of the written examination process, or orally during a PPL Skill Test.

Flying as a Private Pilot is a challenging, but extremely, rewarding hobby. There is a large volume of extremely important material to learn. For the sake of safety of the pilot and their passengers, this learning task must not be underestimated or skimped. Accordingly, we highly recommend that student pilots read each manual in full before attempting each PPL examination to ensure understanding and depth of knowledge. Alternatively, we recommend they seek a dedicated PPL Groundschool service which offers either one-on-one tuition or group study/refresher sessions on the entire syllabus in each subject prior to sitting each examination.

Practice sample questions and answers are included at the end of each section to help students to complete their studies.